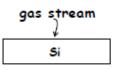
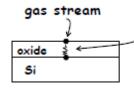

OXIDATION

For dry oxygen:

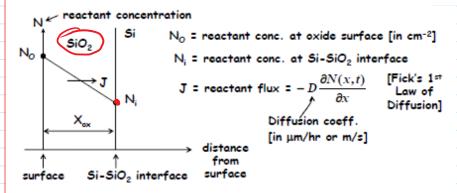
For water vapor:


 $Si + O_2 \rightarrow SiO_2$ $Si + 2H_2O \rightarrow SiO_2 + 2H_2$

Schematically:


Molecular density $SiO_2 \rightarrow 2.3e^{22}$ molecules/cm³ $Si \rightarrow 5e^{22}$ atoms/cm³ :. Vsioz = 2.16x Vs;

Initially: (no oxide @ surface)


♥ Growth rate determined by reaction rate @ the surface

(2) As oxide builds up:

Reactant must diffuse to Si surface where the oxidation reaction takes place

Growth rate governed more by rate of diffusion to the silicon-oxide interface

In the SiO₂:
$$J = D \frac{(N_O - N_i)}{X_{OX}} = \text{constant} \qquad (1)$$
[in # particles/(cm²·s)] Assumption that the reactant does not accumulate in the oxide.

Monday, February 23, 2015

@ Si-SiO₂ interface

Oxidation rate
$$\propto N_i : J \propto N_i \implies J =$$

At steady state J1= J2

Continue Si-SiO₂ interface:

Oxidation rate $\propto N_i \therefore J \propto N_i \implies J = k_z N_i$ (2)

Combining (1) and (2):

Result:

$$\begin{bmatrix} N_i = \frac{J}{k_s} \end{bmatrix} \Rightarrow J = D \left(\frac{N_O - \frac{J}{k_s}}{X_{OX}} \right)$$

$$JX_{OX} = DN_O - \frac{DJ}{k_s} \rightarrow J \left(X_{OX} + \frac{D}{k_s} \right) = DN_O$$

$$\therefore \int J = \frac{DN_O}{X_{OX} + \frac{D}{k_s}} = \text{Flux of reactants}$$

Xox + AXox = B(t+Z) initial condition t=0 -> X0x = Xi

additional time required , time required to grow X_ϵ (to go from $X_i \to X_{OX}$ $/[X_i = initial oxide thickness]$

$$X_{OX}(t) = \frac{A}{2} \left[1 + \frac{4B}{A^2} (t + \tau) \right]^{1/2} - 1$$

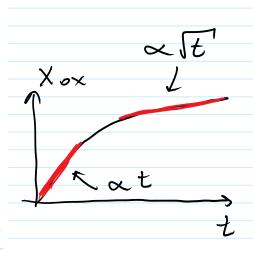
where $A = \frac{2D}{k}$ $\tau = \frac{X_i^2}{B} + \frac{X_i}{(B/A)}$

$$B = \frac{2DN_o}{M} \qquad D = D_o \exp\left(-\frac{E_A}{kT}\right)$$

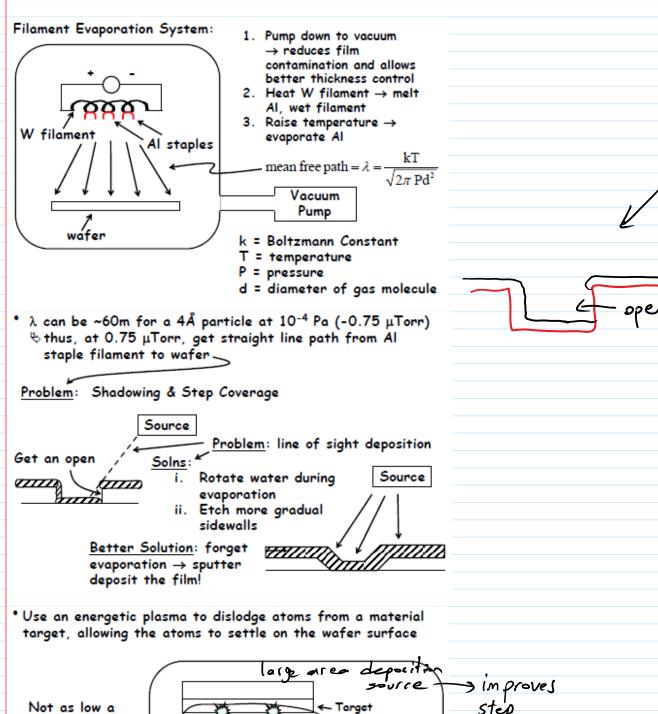
i.e., D governed by an Arrhenius relationship → temperature dependent

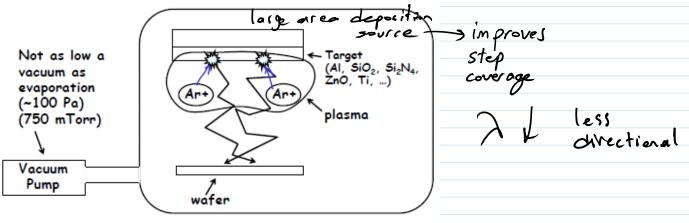
AkB depends on the growth conditions. e.g. temporature

oxide quality is


For shorter times:

 $^{ extstyle C}$ linear growth rate constant Taylor expansion (first term after 1's cancel)

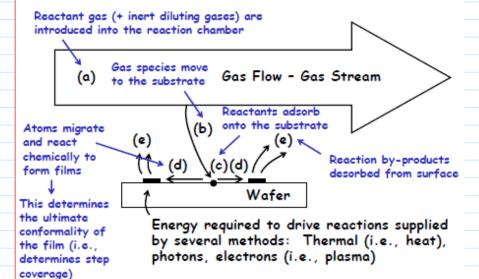

For long oxidation times: oxide growth diffusion-limited


$$\left[\left(t + \tau \right) >> \frac{A^2}{4B} \right] \Rightarrow X_{OX}(t) = \sqrt{B(t + \tau)} \approx \sqrt{Bt}$$

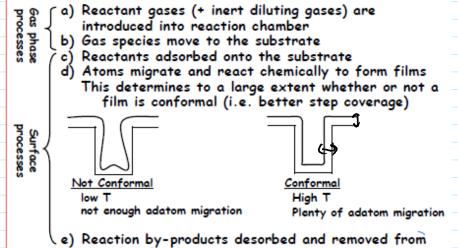
$$t >> \tau$$
Parabolic rate constant

EVAPORATION AND SPUTTER DEPOSITION

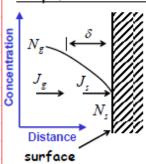
CVD


- Even better conformity than sputtering
- Form thin films on the surface of the substrate by thermal decomposition and/or reaction of gaseous compounds

 Beginning Desired material is deposited directly from the gas phase
 - onto the surface of the substrate
 - $\$ Can be performed at pressures for which λ (i.e., the mean free path) for gas molecules is small


This, combined with relatively high temperature leads to

3 higher surface diffusion Step Coverage!


Types of films: polysilicon, SiO₂, silicon nitride, SiGe, Tungsten (W), Molybdenum (M), Tantalum (Ta), Titanium (Ti), ...

Step-by-Step CVD Sequence:

Simplified Schematic:

N_g = conc. of reactant molecules in the gas stream

N_s = conc. of reactant molecules at the surface

J_s = flux of gas molecules at the surface

J_g = flux of molecules diffusing in from the gas stream

Arrhenius behavior

Jo=ho(Ng-Ns)

Js= Ks Ns

 $J_S = J_G = J$ $h_G(N_G - N_S) = k_S N_S$

hong = Ns(ks+ho)

3 J = ksh6 Ng

ks+k6

growth rate = = = (ks/l/g)/N

ks//hg

T1 → hg

T1 → ks

Ls = Loexp FT

-SRX e FolkT

 $\text{growth rate} = \frac{\text{flux}}{\text{\# molecules incorporated/unit volume}} = \frac{J}{N}$

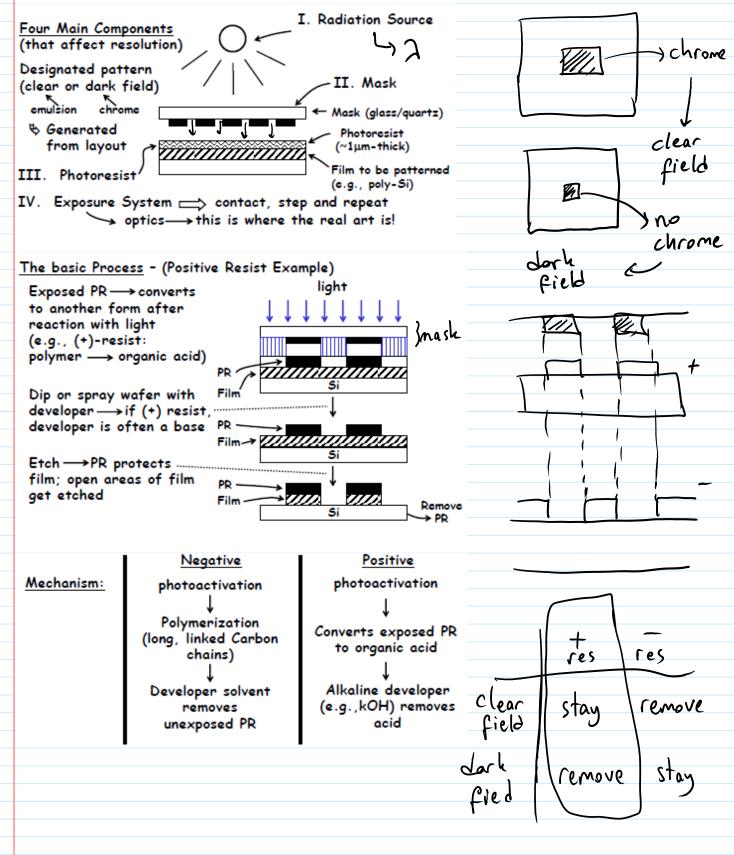
$$= \frac{J}{N} = \frac{k_s h_g}{k_s + h_g} \frac{N_g}{N} = (k_s || h_g) \frac{N_g}{N} = \text{growth rate}$$

log (growth rate)

Mass
Transport
Limited
Regime

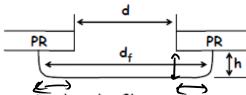
Slope = -Ea

Dep. Rate less dependent on T, here
for better control, better to
operate here (@ higher T)


Raha

hg & D (gas diff. const.)

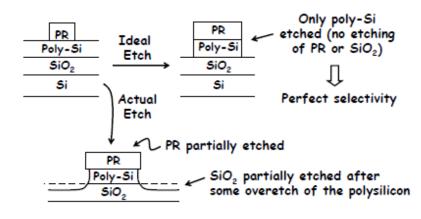
D = Do T 3/2


P 3/2

LITHOGRAPY

ETCHING

- Removal of material over designated areas of the wafer
- Two important metrics:
 - 1. Anisotropy
 - 2. Selectivity
- 1. Anisotropy
 - a) Isotopic Etching (most wet etches)



If 100% isotropic: df = d + 2h

Define: $B = d_f - d$ If $B = 2h \Rightarrow isotropic$

B=0 -> 2f=d -> anisotrople

2. Selectivity -

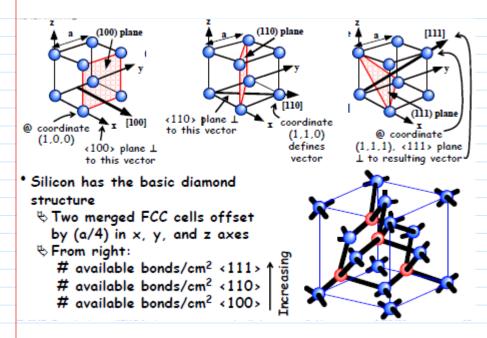
Si etch rate + 00 Si Oz etch

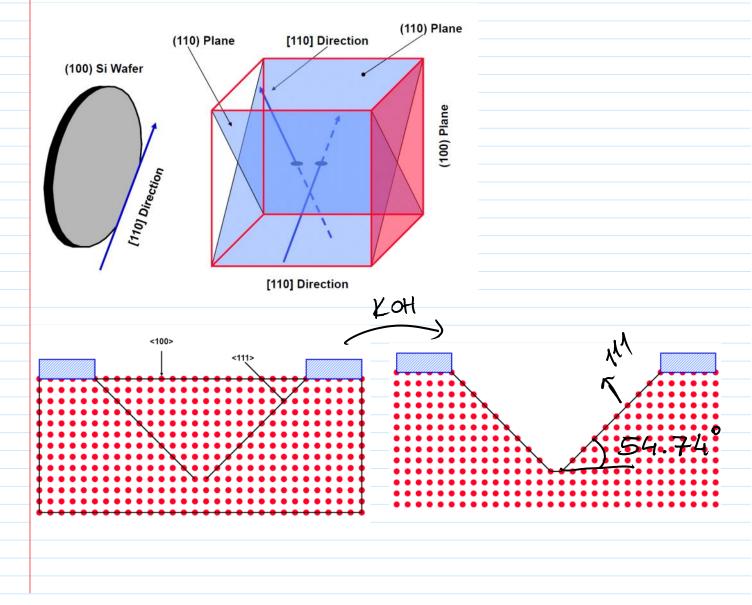
 Wet etching: dip wafer into liquid solution to etch the desired film
 Generally isotropic, thus,

© Generally isotropic, thus inadequate for defining features < 3μm-wide Si PR

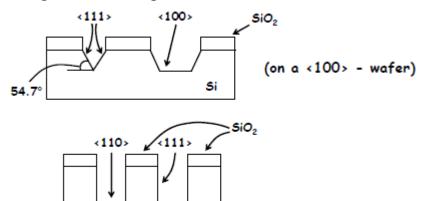
wafer

General Mechanism -




- Diffusion of the reactant to the film surface
- Reaction: adsorption, reaction, desorption
- Diffusion of reaction products from the surface

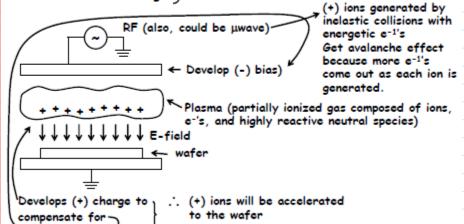
Silicon Wet Etching


Monday, February 23, 2015

1:20 PM

Can get the following:

DRY ETCHING

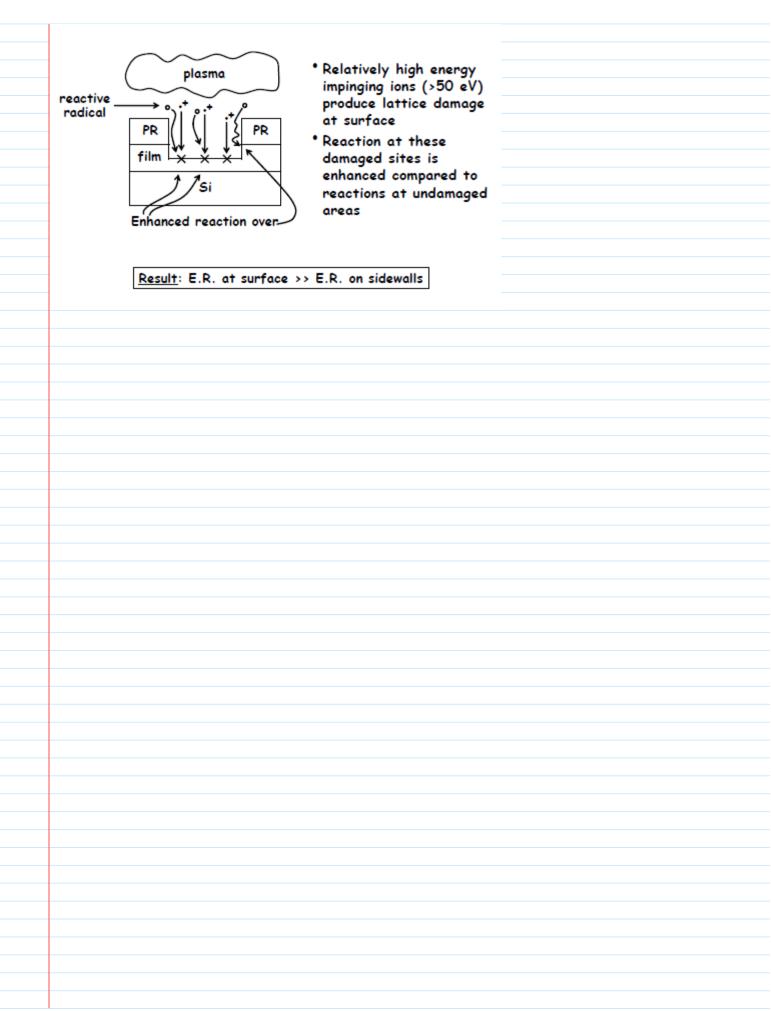

Si

- Physical sputtering
- Plasma etching
- Reactive ion etching

All based upon plasma processes.

(on a <110> - wafer)

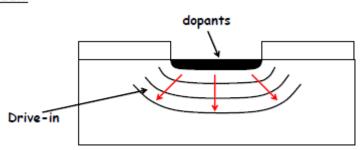
□ Quite anisotropic!



Plasma generates: Los Sputtering John. 1) Ions

2) Activated neutrals

Ly Enhanced chemical reaction


DOPING

* Conductivity Equation: charge magnitude on an electron on an electron conductivity $\sigma = q \mu_{\eta} \eta + q \mu_{p} p$ conductivity electron electron hole density mobility density

* If fewer e-'s, then the dopant is an acceptor: B

: Si : Si : Si : Dope : Si : Si : Si : hole

- Lack of an e⁻ = hole = h⁺
- When e's move into h's, the h's effectively move in the opposite direction → a h' is a mobile (+) charge carrier
- 1. Introduce dopants (introduce a fixed dose Q of dopants)
 - (i) Ion implantation
 - (ii) Predeposition
- 2. Drive in dopants to the desired depth \$\Bigsir \text{High temperature} > 900°C in \$N_2\$ or \$N_2/O_2\$
- Result:

[Modeling] N(x) \uparrow \rightarrow J

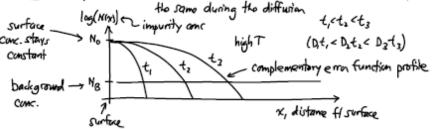
⇒ Dopants from points of high care. more to points of law core. W flux J ⇒ Question: What's N(x,t)?

7 for of time

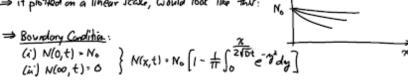
Fick's Law of Diffusion - (1st law) $J(x,t) = -D \frac{\partial N(x,t)}{\partial x} \qquad (1)$ $f(x,t) = -D \frac{\partial N(x,t)}{\partial x} \qquad (1)$ $f(x,t) = -D \frac{\partial N(x,t)}{\partial x} \qquad (1)$ $f(x,t) = -D \frac{\partial N(x,t)}{\partial x} \qquad (2)$ $f(x,t) = -D \frac{\partial N(x,t)}{\partial x} \qquad (3)$

Continuity Equation for Particle Flux
General Form: $\frac{\partial N(x,t)}{\partial t} : -\vec{\nabla} \cdot \vec{J}$ Take of increase negative of the divergence of carc. ω 1 time of particle flux

again, Fick's Law
of Diffusion $J(x,t) = -D \frac{\partial p(x,t)}{\partial x}$

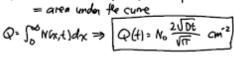

=> we're interested for now in the one dimensional form:

$$\frac{\partial N(x,t)}{\partial t} = -\frac{\partial J}{\partial x} \qquad (2)$$


$$\left[\frac{\partial}{\partial x}(I) \text{ and substitute (2) in (1)}\right] \Rightarrow \frac{\partial N(x,t)}{\partial t} = D \frac{\partial^2 N(x,t)}{\partial x^2} \left[\text{Diffusion in I-D}\right]$$

Solutions: -> dependent upon boundary conditions Suse variable separation or laplace Xform techniques

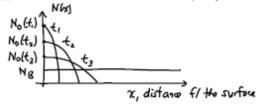
Case 1: Predeposition -> constant source diffusion: surface concentration stays

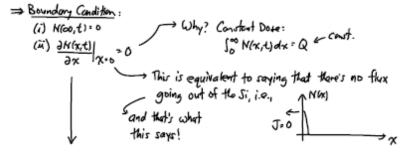


⇒ if plothed on a linear scale, would look like this:



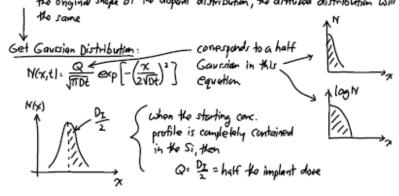
 $N(x,t) = N_0 \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$ $\Rightarrow again, complementary error function (real tables or graph)$

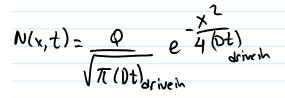

Dose, Q = total # of impunity atoms per unit area in the Si



21/10t = characteristic diffusion length

Case Z: Drive in -> limited source diffusion, i.e., constant done Q





sur face concentration $N(x,t) = N_0 \operatorname{erfc}\left(\frac{X}{2\sqrt{Dt}}\right)$

predeposition dose: Q(+) = No 2 (Dt) (iii) Usually make delta fon. approx : N(x,0) = Q S(x)

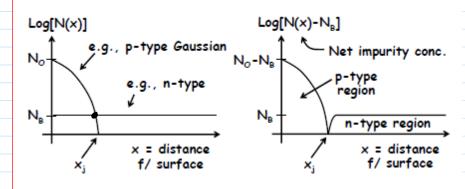
we can do this, because for sufficiently long diffusion times, no matter what
the original shape of the depent distribution, the diffused distribution will be

- Two step diffusion procedure:
 - $\stackrel{h}{\sim} \underline{\mathsf{Step 1}}$: predeposition (i.e., constant source diffusion)
 - \$\frac{5\tep 2}{\text{step 2}}: drive-in diffusion (i.e., limited source diffusion)
- For processes where there is both a predeposition and a drive-in diffusion, the final profile type (i.e., complementary error function or Gaussian) is determined by which has the much greater Dt product:
 - (Dt)_{predep} » (Dt)_{drive-in} ⇒ impurity profile is complementary error function
 - (Dt)_{drive-in} » (Dt)_{predep} ⇒ impurity profile is Gaussian (which is usually the case)
- For actual processes, the junction/diffusion formation is only one of many high temperature steps, each of which contributes to the final junction profile
- * Typical overall process:
 - 1. Selective doping
 - Implant → effective (Dt)₁ = (ΔR_p)²/2 (Gaussian)
 - Drive-in/activation → D₂t₂
 - 2. Other high temperature steps
 - (eg., oxidation, reflow, deposition) → D₃t₃, D₄t₄, ...
 - Each has their own Dt product
 - 3. Then, to find the final profile, use

$$(Dt)_{tot} = \sum_i D_i t_i$$
 $D = D_o \exp \left(-\frac{E_A}{kT}\right)$ (as usual, an Arrhenius relationship)

in the Gaussian distribution expression.

Table 4.1 Typical Diffusion Coefficient Values for a Number of Impurities.

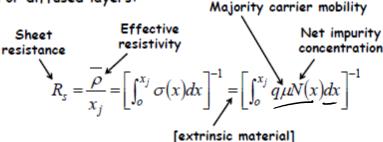

Thermal budget

(Dt) effective = Z(Dt);

stepi

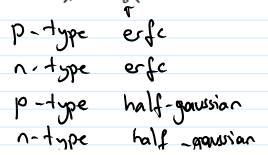
Element	$D_0(\text{cm}^2/\text{sec})$	$E_{A}(eV)$
В	10.5	3.69
Al	8.00	3.47
Ga	3.60	3.51
In	16.5	3.90
P	10.5	3.69
As	0.32	3.56
Sb	5.60	3.95

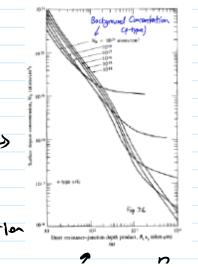
 \mathbf{x}_{j} = point at which diffused impurity profile intersects the background concentration, N_{B}


* Assuming a Gaussian dopant profile: (the most common case)

$$N(x_j, t) = N_o \exp \left[-\left(\frac{x_j}{2\sqrt{Dt}}\right)^2 \right] = N_B \rightarrow x_j = 2\sqrt{Dt \ln\left(\frac{N_o}{N_B}\right)}$$

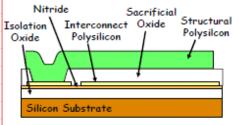
• For a complementary error function profile:


$$N(x_j, t) = N_o \operatorname{erfc}\left(\frac{x_j}{2\sqrt{Dt}}\right) = N_B \rightarrow x_j = 2\sqrt{Dt} \operatorname{erfc}^{-1}\left(\frac{N_B}{N_o}\right)$$

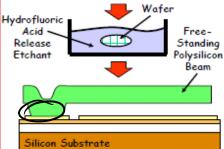

For diffused layers:

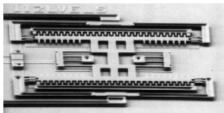
IRVIN'S CURVES

 \forall Illuminates the dependence of R_s on x_j , N_o (the surface concentration), and N_B (the substrate background conc.)

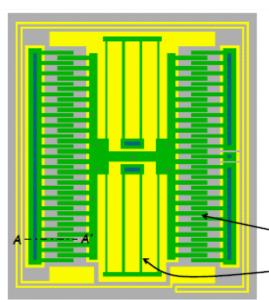

Sur face

arront


n-type half gausian Concentration (5) Sheet resistance-junction depth product, K_{a_0} other people (6) 2x axis: Rs·Xi


Surface Micromachining

Monday, February 23, 2015 1:49 PM

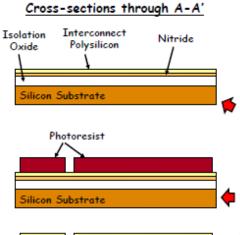


- Uses IC fabrication instrumentation exclusively
- Variations: sacrificial layer thickness, fine- vs. largegrained polysilicon, in situ vs. POCL3-doping

300 kHz Folded-Beam Micromechanical Resonator

 At Left: Layout for a folded-beam capacitive combdriven micromechanical resonator

Masking Layers:

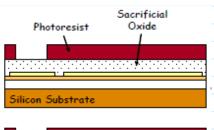

1st Polysilicon: POLY1(cf)

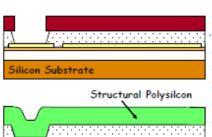
Anchor Opening: ANCHOR(df) (-2nd Polysilicon:

POLY2(cf) Capacitive comb-drive

for linear actuation

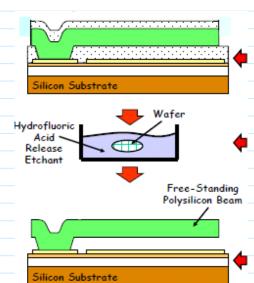
Folded-beam support structure for stress relief

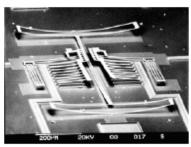



Silicon Substrate

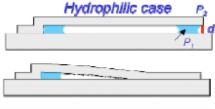
- Deposit isolation LTO (or PSG):
 - 🏷 Target = 2μm
- ♥ 1 hr. 40 min. LPCVD @450°C
- Densify the LTO (or PSG)
- ♦ Anneal @950°C for 30 min.
- Deposit nitride:

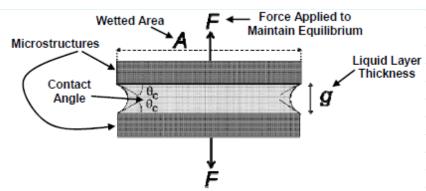
 - ∜ Target = 100nm ∜ 22 min. LPCVD @800°C
- Deposit interconnect polySi:


 - Target = 300nm
 In-situ Phosphorous-doped
 - § 1 hr. 30 min. LPCVD @650°C
- Lithography to define poly1 interconnects using the POLY1(cf)
- RIE polysilicon interconnects: \(\bar{CCI_4}/\text{He}/O_2 \) @300W,280mTorr
- Remove photoresist in PRS2000

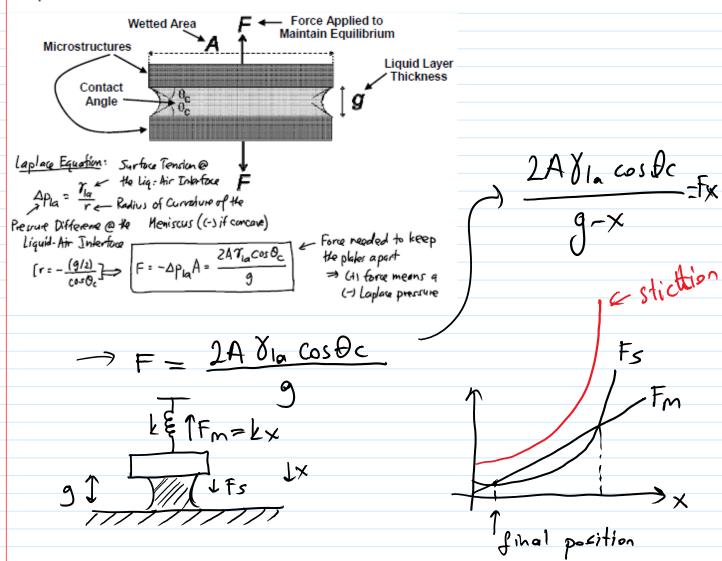

Silicon Substrate

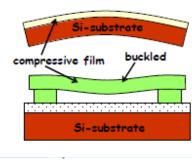
- <u>Stiction</u>: sticking of released devices to the substrate or to other on-chip structures
 - Difficult to tell if a structure is stuck to substrate by just looking through a microscope
- Residual Stress in Thin Films
 - Causes bending or warping of microstructures
 - Limits the sizes (and sometimes geometries) of structures
- Topography
 - Stringers can limit the number of structural levels





- Hydrophilic: -
 - A surface that invites wetting by water
 - ♥ Get stiction
 - ♥ Occurs when the contact angle θ_{water} < 90°</p>
- Hydrophobic:
 - A surface that repels wetting by water
 - Avoids stiction
 - Occurs when the contact angle θ_{water} > 90°

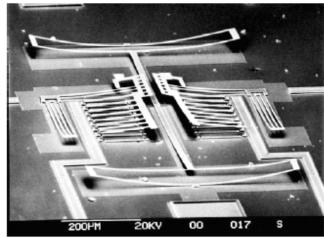




- Thin liquid layer between two solid plates ⇒ adhesive
- * If the contact angle between liquid and solid $\theta_{C^4}90^\circ$:
 - Pressure inside the liquid is lower than outside
 - Net attractive force between the plates
- The pressure difference (i.e., force) is given by the Laplace equation

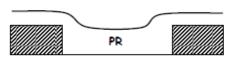
STRESS

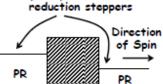
- Under <u>tensile</u> <u>stress</u>, a film wants to shrink w/r to its substrate
 - Caused, e.g., by differences in film vs. substrate thermal expansion coefficients
 - ♥ If suspended above a substrate and anchored to it at two points, the film will be "stretched" by the substrate
- Under compressive stress, a film wants to expand w/r to its substrate
 - ♥ If suspended above a substrate and anchored to it at two points, the film will buckle over the substrate



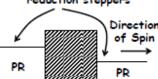
-substrate

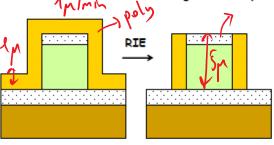
Si-substrate

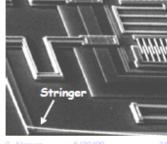

tensile film


- Variation of residual stress in the direction of film growth
- · Can warp released structures in z-direction

TOPOGRAPHY


 Degradation of lithographic resolution PR step coverage, streaking


Thickness differences


pose problems for

Problematic when using anisotropic etching, e.g., RIE

Ly to make flat surface